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motion, the lower equilibrium position. 
We now consider the upper equilibrium positon of the pendulum, which becomes stable for 

kZ <0,5 /'lo/. Taking the average of the force function and the kinetic energy just as 'de 
did for the lower equilibrium position, we again obtain the maximum of the mean 11 and the 
minimum of the mean T at the stable upper equilibrium position. 

Therefore, an approximate analysis of the values of tli,,iT: in specific mechanics 
problems verifies the V.V. Beletskii hypothesis and also enables us to propose a hypothesis 
about the minimality of the mean value of the kinetic energy and the minimality of the mean 
value of the total energy T-U of mechanical systems in stable isolated synchronous motions. 

The author is grateful to V.V. Beletskii for his interest. 
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ON OSCILLATIONS 
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OF A GYROSTAT AROUND STABLE PERMANENT ROTATIONS* 

M.P. TSOPA 

The oscillations of a gyrostat with constant gyrostatic moment are invest- 
igatedby the methodof averaging for theEuler, Lagrange andKovalevskaya cases, 
which are analogous to the oscillations studied earlier /l/ of a solid 
around its stable permanent rotations. 

We consider the perturbed motion of a gyrostat in the neighbourhood of permanent rotations 
in a central Newtonian field /2/ whose force function is given by 

u = --mg ("OY, T Y"Y% + %Ys) - 'I+ (Ay? + BY,* + Qo'), or = Q/R. 

Here A, B, C are the principal moments of gyrostat inertia, yi are the direction cosines 
of the z-coordinate axis in the principal axes of inertia, 201 Yo. 20 are coordinates of the 
centre of gyrostat mass in the axes of inertia, m is the gyrostat mass, and g is the accelera- 
tion due to gravity at a distance R from the gravitating centre. 

In the Euler, Lagrange, and Kovalevskaya cases the characteristic equation of the first 
approximation has one or two zero roots and one or two pairs of pure imaginary roots. Consequ- 
ently, the transformation from the variables z; to the amplitudes og,tk and phases + in matrix 
form will be 

. 

z = z ai [Re I', (IO,) c0s ui - Im I', (to,) sin u,] -~ I'_ (I)) $i !l) 

where b,,V, are non-zero columns for the pure imaginary and zero roots of the associated matrix 
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of the first approximation equations. 
In the Euler case (zo= y,= zg= 0) the equations of motion of a gyrostat with constant 

gyrostatic moment (k,= const) in a homogeneous gravitational field (p=O) allow of the partic- 
ular solution p = Q = 0; r= 0 = collst for A, = k, = 0, k, = k = con&, where p.4,' are the components 
of the angular velocity along the principal axes of inertia. Setting p = z,. g= z2, r= wi_z3 
in the perturbed motion, we have the equations 

zl' + P,z, _t a+~, = 0, z2' - P+, - b.qr, = 0, z3’ - qz2 = 0 

a=(C--)!‘A, b=(C-A)/E, c=(A-B)/C 

x1 = k/A, x1= klB, Q, = ao + x1, Q, = bo + xp 

(2) 

We linarize the perturbed motion equations (2) and form the matrix (D = didt is the differ- 
entiation operator) 

,(+? " il 

When the conditions /3/ A>C,, B>C,, are satisfied, where C,= C+ kio, gyrostat rota- 
tion around the z-coordinate axis is stable and the characteristic equation h IhP-+ R,P*l = 0 
has the zero root h,= 0 and the pair of pure imaginary roots &,a - -&f2 = *rQ,P,. If the 
quantity C,>O, then it can be treated as a reduced moment of inertia of the gyrostat for 
the permanent I axis. In the case when k and o are opossite in sign, the quantity C can be 
negative, hence the motion will always be stable, 

The columns of the associated matrix of the pure imaginary roots +=*iP are mutually 
proportional; consequently, by selecting 

as independent, we write the equations of perturbed motion of the gyrostat in normal coord- 
inates as follows: 

al' = (bx, - 17%~) Q-'&sin u cos U, 6' = cQQ,o-*o,*sin y cost 
IL' = Q + Q-IL (abo + ax,sin* Y + bx+o2u) 

Equations (3) averaged with respect to the angular variable u have the solution 

"1 = $0, E = fo 
IL = [Q + VIWIEo (2abo + ax* + bx,)] t + u. = o*t + u. 

(3) 

(4) 

The amplitudes a1 and 5 are considered to be constant in the calculation of the means. 
The solution (4) obtained for the approximate equations is a solution of the exact equations 
(not the averagedones) for c= 0, i.e., for A = B. The solution (4) describes the gyrostat 
oscillation in the variables z, and zp with period T = 'n/o*. 

The phase trajectories in the space of the variables zl, zlr z3 are ellipses whose planes 
are parallel to the zlzq plane. The results obtained for k= 0 agree with the results in /l/. 

For gyrostat motion in a central Newtonian force field the Euler:Poisson equations allow 
of the particular solution p=q=O. r= 0, v1 = yI = 0, ys= 1 for k, = k, = 0, k, = k = const. Setting 
p = II, 9 = 12, r = 0 i 18, Y1 = Y,, Yz = Y,. Ts = i + Y, in the perturbed motion, we arrive at the equa- 

tions a1' + Q1$ - aI% + a (W3 - PY*Ys) = 0 (5) 

G’ - Qs, + by, - b (vj - WY,) = 0 

23’ - c (v* - PYIY2) = 0, . YI + *2 - @Y* + %Ya - I*#* = 0 

I/*’ - I1 i OYI - ZIYS i 23Y, -= 03 Y,’ + I,Yn - qy, = 0 

The characteristic equation of the linearized system (5) 

has two zero roots and two pairs of purely imaginary roots -&or. 

The perturbed motion equations (5) in normal coordinates take the following form after 
averaging over the angular variables ok: 

(6) 

?.a IAd + d.2 + n] = 0; m = co1 + n,n* - p (a + b) 

n = Q,R,o* - p (2obo + ax1 + bx,) o + abp’ 

The solution of these equations a6 = oko, &. = Eke, uh_ = ok.1 + Uko shows that the perturbations 
3, and yi are quasiperiodic functions of time with period Tk-i2n/ok*. 
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In the Lagrange case (zO = Y, = 0, A = B), the Euler-Poisson equations for a gyrostat with 
constant gyrostatic moment in a central Newtonian field allow of the particular solution P' 
q = 0, y1 = y, = 0, r = o, ys = t for k, = k, = 0 and k, = k = const. Setting P = 11, q =z:, Y, = Y,, Y$ = Y,, 

Y3 = 1 i- Y3 in the perturbed motion, we obtain the perturbed motion equations 

11' - a=i - (b - ~1) YP + P.,Y~, = 0, II' + ==I + (b - 1(l) Y, - I~~YIY~ = 0 (7: 

Y1' + +a - 'Yr + %Ys = 0, Y,' - 01 + ry, - QYJ = 0 
ys' - z*y‘ + .z,Y* = 0, r' z 0 
a=[(A-C)r--l/A, b=mgr,/A, pl==(A-C)p.lA 

The characteristic equation 

h [h' + (9 - 2b + .a + .Z@,) A* + (w + b - pliaj = 0 

of the linearized system has one zero root and two pairs of purely imaginary roots -&Ok. The 

transformation of (1) to three amplitudes al,+& and two phases u,and U, has the form 

(8) 

clk=r(ar+b-~,)-auk’, c,k=ar+b-pPI+uk’ 

d,k=-Ok(Ot’+b--PL-rZ), dzk=(a+r)ak (k=i,Z) 

Substituting (8) into (7), we obtain equations in normal coordinates which will have the 

following form after the average has been taken over the angular variables uY: 

+'=O, 5'=0, uh.' = Ok'f(-- iP'Eo(zi)-l(a,, + Bkk) = q* (9) 

d = Car + b - ~+)(a + r) (o,’ - y’) 

%k = ‘1, .,-kdLk - %, S- & Sk 

bkk = ‘lkd,. a-k - Phkd,, 3-k 

and their solution will be 

"k = ,+a, 5= 50, "6 =Ok*t+.YO (10) 

It can be concluded on the basis of (10) that the variables zk,Yk are quasiperiodic 

functions of time with the periods T1,=2n/ok*. 
In the case of gyrostat motion in a homogeneous gravity field, the perturbed motion equa- 

tions, the averaged equations, and their solutions are obtained from (7)-(10) by substituting 

p = 0. 
We now examine gyrostat oscillation in a central Newtonian force field in the Kovalevskaya 

case (Y,, = I,, = 0, A = B = 2C). The equations of motion allow of the particular solution p=o,q= 

I- = y* = ys = 0, y1 = i for k, = k, = 0, k, = k = con& The perturbed motion equations will be 

21,' - f*Q + PY*Ys = 0 (11) 

4’ + (0 + X) 33 - UYs + Jhz3 - FYS (1 + YJ = 0 
Is’ - xl* + ay, = 0, y1’ + zzy3 - zsy, = 0 

Y,’ + Gd - (0 + 4 Y3 + %Yl = 0. Y 3’ - 13 + (0 + 4 Y, + GYl = 0 
a = Zmgr,iA , x = 2kiA 

The characteristic equation of the linearized system (11) 

2J.a [u'+ (23 - 3a +x (0 f x) - p) A'+ (I (a - 01 + j.l) f 
xo(O* - 20 - ).I + ox)] = 0 

has two zero roots and two parirs of purely imaginary roots -&ok for stable permanent rota- 

tions a<xo, consequently, transformation of the equations to the normal coordinates ak, &, Uk 

is by the following formulas: 

2 

y*=42, y, = - 2 d,,ai sinu,, 
i-1 

c Ik=aO-%(d-Okt)r Clk = a + ok* -x0 

dlk = ok (a + mk 2-&), d2k=-a6(co-x) (k=l,2) 

The averaged equations 

ak' =o, 5; =O, Uk' = Ok + (-1) k2-1(ekk + Bkk) =ek* 

akk = ~r,~__~ [-- 41dzk + EPdlkl(~nc~:- c~~c~I)-~ 

&k = [- ~1(2-'cr&,,,-,, fC&,,a-_k )-I- 

f: (clrd,,3_-k +2-'lvzrd?.,_l;)l(d,,d,,- G&P 

have the solution ok= nko,&= &o, 01 = ok*t+ U&o. which shows that the variables *iv Yi are quasi- 

periodic functions of the time with the periods Tk= h/ok*. 
If the gyrostat motion occurs in a homogeneous garvity field (p= O), then the motion in 

the zi, I/i variables remains quasiperidic. 
The presence of a gyrostatic moment results in a change in the oscillation frequencies 
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in the neighbourhood of stable rotations. 
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ON THE NON-UNIQUENESS. OF NON-LINEAR WAVE SOLUTIONS 
IN A VISCOUS LAYER* 

A.V. BUNOV, E.A. DEMEKHIN, and V.YA. SHKADOV 

Solutions of the stationary travelling wave type are considered in draining 
layers of a viscous fluid. A one-parameter family of waves /l/ is studied 
that softly branches off into the upper branch of the neutral stability 
curve of the plane-parallel flow and goes over into a negative soliton 
(phase velocity c<3) as the wave number tends to zero. It is shown that 
this family is not unique: for small values of the parameter 6 character- 
izing the mass flow rate, a second and third family of waves branches off 
from it with half the period. The critical value a= 6, is found for 
which the bifurcation points of the second and third families merge, while 
for 6>b, they go into the complex plane; a dependence of the wave number 
on 6 for which the bifurcation occurs is obtained analytically. The 
properties of the second family of the periodic wave and positive soliton 

type, for which c>3 are studied. The solutions are constructed numer- 
ically: the periodicsolutions arecontinuedin the parameter from the 
bifurcation points or from the known solutions by using the method of 
invariant imbedding; the soliton solutions are constructed by joining the 
linear asymptotic forms as the values of the longitudinal coordinate tend 
to infinity. 

1. Steady wave motions of a viscous fluid in a plane layer on a vertical surface are 
described in the long-wave approximation by the equation /2, 3/ 

hsh" + 6 [6 (q - c)* - c*h*] h' + [hs - q - c (h - I)] = 0 (1.1) 
6 = 3-~'.5-'y'/'R'v' y = ~p-lv-'/rg-'/* 

Here h(r) is the layer thickness, g is the mean flow rate, c is the phase velocity refer- 
red to the mean flow rate velocity of the laminar waveless flow, D is the surface tension, R 
is Reynolds number calculated from the mean flow rate and the layer thickness corresponding 
to waveless flow, and + is the longitudinal coordinate. 

The conditions for periodic waves 

(1.2) 

and for solitary waves (solitons) 
h-t. h(")-0 as r-*tm (1.3) 

The trivial solution h(=)zl, q= 1 corresponds to a plane-parallel waveless flow-As iS 
shown in /2/, a selfoscillating wave solution branches off softly from the trivial solution 

at the point e0 = f/isa. The fundamental properties of these solutions are investigated in /2, 
4.i. 

Introducing the small parameter E, we obtain the following expansion in the semicircle 
a = CL0 
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